Part Number Hot Search : 
52300 2SC104 HD14020B MC145 HMC341 DM160 STRLP TPS830F
Product Description
Full Text Search
 

To Download IR2110L6 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  features n floating channel designed for bootstrap operation fully operational to +600v tolerant to negative transient voltage dv/dt immune n gate drive supply range from 10 to 20v n undervoltage lockout for both channels n separate logic supply range from 5 to 20v logic and power ground 5v offset n cmos schmitt-triggered inputs with pull-down n cycle by cycle edge-triggered shutdown logic n matched propagation delay for both channels n outputs in phase with inputs data sheet no. pd-6.074 IR2110L6 high and low side driver product summary v offset 600v max. i o +/- 2a / 2a v out 10 - 20v t on/off (typ.) 120 & 94 ns delay matching 10 ns description the IR2110L6 is a high voltage, high speed power mosfet and igbt driver with independent high and low side referenced output channels. proprietary hvic and latch immune cmos technologies enable rugge- dized monolithic construction. logic inputs are com- patible with standard cmos or lsttl outputs. the output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. propa- gation delays are matched to simplify use in high fre- quency applications. the floating channel can be used to drive an n-channel power mosfet or igbt in the high side configuration which operates up to 600 volts. parameter min. max. units v b high side floating supply voltage -0.5 v s + 20 v s high side floating supply offset voltage 600 v ho high side floating output voltage v s - 0.5 v b + 0.5 v cc low side fixed supply voltage -0.5 20 v lo low side output voltage -0.5 v cc + 0.5 v v dd logic supply voltage -0.5 v ss + 20 v ss logic supply offset voltage v cc - 20 v cc + 0.5 v in logic input voltage (hin, lin & sd) v ss - 0.5 v dd + 0.5 dv s /dt allowable offset supply voltage tr ansient (figure 2) 50 v/ns p d package power dissipation @ t a +25c 1.6 w r q ja thermal resistance, junction to ambient 75 c/w t j junction temperature -55 125 t s storage t emperature -55 150 c t l lead temperature (soldering, 10 seconds) 300 weight 1.5 (typical) g absolute maximum ratings absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. all voltage parameters are absolute volt- ages referenced to com. the ther mal resistance and power dissipation ratings are measured under board mounted and still air conditions.
IR2110L6 tj = 25c tj = -55 to 125c parameter min. typ. max. min. max. units test conditions t on turn-on propagation delay 120 150 260 v s = 0v t off turn-off propagation delay 94 125 220 v s = 600v t sd shutdown propagation delay 110 140 235 v s = 600v t r turn-on rise time 253550 c l = 1000pf t f turn-off f all time 17 25 40 c l = 1000pf mt delay matching, hs & ls turn-on/off 10 | h t on - l t on | / | h t off - l t off | ns dynamic electrical characteristics v bias (v cc , v bs , v dd ) = 15v, and v ss = com unless otherwise specified. the dynamic electrical characteristics are measured using the test circuit shown in figure 3. recommended operating conditions the input/output logic timing diagram is shown in figure 1. for proper operation the device should be used within the recommended conditions. the v s and v ss offset ratings are tested with all supplies biased at 15v differential. typical ratings at other bias conditions are shown in figures 36 and 37. parameter min. max. units v b high side floating supply absolute voltage v s + 10 v s + 20 v s high side floating supply offset voltage -4 600 v ho high side floating output voltage v s v b v cc low side fixed supply voltage 10 20 v v lo low side output voltage 0 v cc v dd logic supply voltage v ss + 5 v ss + 20 v ss logic supply offset voltage -5 5 v in logic input voltage (hin, lin & sd) v ss v dd typical connection hin up to 500v to load v dd v b v s ho lo com hin lin v ss sd v cc lin v dd sd v ss v cc 600v
IR2110L6 tj = 25c tj = -55 to 125c parameter min. typ. max. min. max. units test conditions v ih logic 1 input v oltage 3.1 3.3 v dd = 5v 6.4 6.8 v dd = 10v 9.5 10 v v dd = 15v 12.5 13.3 v dd = 20v v il logic 0 input voltage 1.8 1.7 v dd = 5v 3.8 3.6 v dd = 10v 6 5.7 v v dd = 15v 8.3 7.9 v dd = 20v v oh high level output voltage, v bias - v o 0.7 1.2 1.5 v in =v ih, i o = 0a v ol low level output voltage, v o 0.1 0.1 v in =v ih, i o = 0a i lk offset supply leakage current 50 250 v b = v s = 600v i qbs quiescent v bs supply current 125 230 500 a v in =0v or v dd i qcc quiescent v cc supply current 180 340 600 v in =0v , or v dd i qdd quiescent v dd supply current 5 30 60 v in =0v , or v dd i in+ logic 1 input bias current 15 40 70 v in = v dd i in- logic 0 input bias current 1.0 10 v in = 0v v bsuv+ v bs supply undervoltage positive 7.5 8.6 9.7 going threshold v bsuv- v bs supply undervoltage negative 7.0 8.2 9.4 going threshold v ccuv+ v cc supply undervoltage positive 7.4 8.5 9.6 v going threshold v ccuv- v cc supply undervoltage negative 7.0 8.2 9.4 going threshold i o+ output high short circuit pulsed 2.0 v o = 0v, v in = v dd current apw 10 s i o- output low short circuit pulsed 2.0 v o = 15v, v in = 0v current pw 10 s static electrical characteristics v bias (v cc , v bs , v dd ) = 15v, unless otherwise specified. the v in , v th and i in parameters are referenced to v ss and are applicable to all three logic input pins: hin, lin and sd. the v o and i o parameters are referenced to com or v s and are applicable to the respective output pins: ho or lo.
IR2110L6 figure 1. input/output timing diagram figure 2. floating supply v oltage transient test circuit figure 3. switc hing time test circuit figure 4. switc hing time wavef orm definition figure 6. delay matc hing wave form definitions figure 5. shutdown waveform definitions sd t sd ho lo 50% 90% hin lin t r t on t f t off ho lo 50% 50% 90% 90% 10% 10% hin lin ho 50% 50% 10% lo 90% mt ho lo mt hv = 10 to 600v (0 to 600v)
IR2110L6 figure 9b. shutdown time vs. voltage figure 8a. turn-off time vs. temperature figure 8b. turn-off time vs. v oltage figure 7a. turn-on time vs. temperature figure 7b. turn-on time vs. v oltage figure 9a. shutdown time vs. temperature 0 50 100 150 200 250 10 12 14 16 18 20 v bias supply voltage (v) turn-on delay time (n s) max. typ. 0 50 100 150 200 250 -50 -25 0 25 50 75 100 125 temperature (c) t urn-on delay time (n s) max. typ. 0 50 100 150 200 250 -50 -25 0 25 50 75 100 125 temperature (c) turn-off delay time (n s) max. typ. 0 50 100 150 200 250 10 12 14 16 18 20 v bias supply voltage (v) t urn-off delay time (n s) max. typ. 0 50 100 150 200 250 10 12 14 16 18 20 v bias supply voltage (v) s hutdown delay time (n s) max. typ. 0 50 100 150 200 250 -50 -25 0 25 50 75 100 125 temperature (c) s hutdown delay time (n s) max. typ.
IR2110L6 figure 12a. logic 1 input threshold vs. temperature figure 12b. logic 1 input threshold vs. voltage figure 10a. turn-on rise time vs. temperature figure 11a. turn-off f all time vs. temperature figure 11b. turn-off f all time vs. v oltage figure 10b. turn-on rise time vs. v oltage 0 20 40 60 80 100 -50 -25 0 25 50 75 100 125 temperature (c) turn-on rise time (n s) max. typ. 0 20 40 60 80 100 10 12 14 16 18 20 v bias supply voltage (v) turn-on rise time (n s) max. typ. 0 10 20 30 40 50 -50 -25 0 25 50 75 100 125 temperature (c) t urn-off fall time (ns ) max. typ. 0 10 20 30 40 50 10 12 14 16 18 20 v bias supply voltage (v) t urn-off fall time (ns ) max. typ. 0.0 3.0 6.0 9.0 12.0 15.0 -50 -25 0 25 50 75 100 125 temperature (c) l ogic "1" input threshold (v ) min. 0.0 3.0 6.0 9.0 12.0 15.0 5 7.5 10 12.5 15 17.5 20 v dd logic supply voltage (v) l ogic "1" input threshold (v ) min.
IR2110L6 figure 13a. logic 0 input threshold vs. temperature figure 13b. logic 0 input threshold vs. voltage figure 14a. high level output vs. temperature figure 14b. high level output vs. voltage figure 15b. low level output vs. voltage figure 15a. low level output vs. temperature 0.0 3.0 6.0 9.0 12.0 15.0 -50 -25 0 25 50 75 100 125 temperature (c) l ogic "0" input threshold (v ) max. 0.0 3.0 6.0 9.0 12.0 15.0 5 7.5 10 12.5 15 17.5 20 v dd logic supply voltage (v) l ogic "0" input threshold (v ) max. 0.00 1.00 2.00 3.00 4.00 5.00 -50 -25 0 25 50 75 100 125 temperature (c) h igh level output voltage (v ) max. 0.00 0.20 0.40 0.60 0.80 1.00 -50 -25 0 25 50 75 100 125 temperature (c) l ow level output voltage (v ) max. 0.00 1.00 2.00 3.00 4.00 5.00 10 12 14 16 18 20 v bias supply voltage (v) high level output voltage (v ) max. 0.0 3.0 6.0 9.0 12.0 15.0 5 7.5 10 12.5 15 17.5 20 v dd logic supply voltage (v) l ogic "1" input threshold (v ) min.
IR2110L6 figure 16b. offset supply current vs. voltage figure 16a. offset supply current vs. temperature figure 18a. v cc supply current vs. temperature figure 18b. v cc supply current vs. v oltage figure 17a. v bs supply current vs. temperature figure 17b. v bs supply current vs. v oltage 0 125 250 375 500 625 10 12 14 16 18 20 v cc fixed supply voltage (v) v cc supply current (a ) max. typ. 0 125 250 375 500 625 -50 -25 0 25 50 75 100 125 temperature (c) v cc supply current (a ) max. typ. 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature (c) v bs supply current (a ) max. typ. 0 100 200 300 400 500 10 12 14 16 18 20 v bs floating supply voltage (v) v bs supply current (a ) max. typ. 0 100 200 300 400 500 0 100 200 300 400 500 v b boost voltage (v) o ffset supply leakage current (a ) max. 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature (c) o ffset supply leakage current (a ) max.
IR2110L6 figure 21a. logic 0 input current vs. temperature figure 21b. logic 0 input current vs. voltage figure 19a. v dd supply current vs. temperature figure 19b. v dd supply current vs. v oltage figure 20a. logic 1 input current vs. temperature figure 20b. logic 1 input current vs. voltage 0 20 40 60 80 100 -50 -25 0 25 50 75 100 125 temperature (c) v dd supply current (a ) max. typ. 0 20 40 60 80 100 5 7.5 10 12.5 15 17.5 20 v dd logic supply voltage (v) v dd supply current (a ) max. typ. 0 20 40 60 80 100 -50 -25 0 25 50 75 100 125 temperature (c) logic "1" input bias current (a ) max. typ. 0 20 40 60 80 100 5 7.5 10 12.5 15 17.5 20 v dd logic supply voltage (v) l ogic "1" input bias current (a ) max. typ. 0.00 1.00 2.00 3.00 4.00 5.00 -50 -25 0 25 50 75 100 125 temperature (c) l ogic "0" input bias current (a ) max. 0.00 1.00 2.00 3.00 4.00 5.00 5 7.5 10 12.5 15 17.5 20 v dd logic supply voltage (v) l ogic "0" input bias current (a ) max.
IR2110L6 6.0 7.0 8.0 9.0 10.0 11.0 -50 -25 0 25 50 75 100 125 temperature (c) v cc undervoltage lockout + (v ) max. typ. min. 6.0 7.0 8.0 9.0 10.0 11.0 -50 -25 0 25 50 75 100 125 temperature (c) v bs undervoltage lockout + (v ) max. typ. min. figure 22. v bs undervoltage (+) vs. temperature figure 23. v bs undervoltage (-) vs. temperature figure 24. v cc undervoltage (+) vs. temperature figure 25. v cc undervoltage (-) vs. temperature figure 26a. output source current vs. temperature figure 26b. output source current vs. v oltage 6.0 7.0 8.0 9.0 10.0 11.0 -50 -25 0 25 50 75 100 125 temperature (c) v bs undervoltage lockout - (v ) max. typ. min. 6.0 7.0 8.0 9.0 10.0 11.0 -50 -25 0 25 50 75 100 125 temperature (c) v cc undervoltage lockout - (v ) max. typ. min. 0.00 1.00 2.00 3.00 4.00 5.00 10 12 14 16 18 20 v bias supply voltage (v) o utput source current (a ) min. typ. 0.00 1.00 2.00 3.00 4.00 5.00 -50 -25 0 25 50 75 100 125 temperature (c) output source current (a ) min. typ.
IR2110L6 figure 28. IR2110L6 t j vs. frequency (irfbc20) r gate = 33 w w w w w , v cc = 15v figure 29. IR2110L6 t j vs. frequency (irfbc30) r gate = 22 w w w w w , v cc = 15v figure 27b. output sink current vs. voltage figure 27a. output sink current vs. temperature figure 31. IR2110L6 t j vs. frequency (irfpe50) r gate = 10 w w w w w , v cc = 15v figure 30. IR2110L6 t j vs. frequency (irfbc40) r gate = 15 w w w w w , v cc = 15v 0.00 1.00 2.00 3.00 4.00 5.00 10 12 14 16 18 20 v bias supply voltage (v) o utput sink current (a ) min. typ. 0 25 50 75 100 125 150 1e+2 1e+3 1e+4 1e+5 1e+6 frequency (hz) j unction temperature (c ) 32 0v 14 0v 10 v 0 25 50 75 100 125 150 1e+2 1e+3 1e+4 1e+5 1e+6 frequency (hz) j unction temperature (c ) 32 0v 14 0v 10 v 0 25 50 75 100 125 150 1e+2 1e+3 1e+4 1e+5 1e+6 frequency (hz) j unction temperature (c ) 32 0v 14 0v 10 v 0 25 50 75 100 125 150 1e+2 1e+3 1e+4 1e+5 1e+6 frequency (hz) j unction temperature (c ) 32 0v 14 0v 10 v 0.00 1.00 2.00 3.00 4.00 5.00 -50 -25 0 25 50 75 100 125 temperature (c) o utput sink current (a ) min. typ.
IR2110L6 figure 32. IR2110L6s t j vs. frequency (irfbc20) r gate = 33 w w w w w , v cc = 15v figure 33. IR2110L6s t j vs. frequency (irfbc30) r gate = 22 w w w w w , v cc = 15v figure 36. maximum v s negative offset vs. v bs supply voltage figure 37. maximum v ss positive offset vs. v cc supply voltage figure 34. IR2110L6s t j vs. frequency (irfbc40) r gate = 15 w w w w w , v cc = 15v figure 35. IR2110L6s t j vs. frequency (irfpe50) r gate = 10 w w w w w , v cc = 15v 0 25 50 75 100 125 150 1e+2 1e+3 1e+4 1e+5 1e+6 frequency (hz) j unction temperature (c ) 32 0v 14 0v 10 v 0 25 50 75 100 125 150 1e+2 1e+3 1e+4 1e+5 1e+6 frequency (hz) j unction temperature (c ) 32 0v 14 0v 10 v 0 25 50 75 100 125 150 1e+2 1e+3 1e+4 1e+5 1e+6 frequency (hz) j unction temperature (c ) 32 0v 14 0v 10 v 0 25 50 75 100 125 150 1e+2 1e+3 1e+4 1e+5 1e+6 frequency (hz) j unction temperature (c ) 32 0v 14 0v 10 v -10.0 -8.0 -6.0 -4.0 -2.0 0.0 10 12 14 16 18 20 v bs floating supply voltage (v) v s offset supply voltage (v ) typ. 0.0 4.0 8.0 12.0 16.0 20.0 10 12 14 16 18 20 v cc fixed supply voltage (v) v ss logic supply offset voltage (v ) typ.
IR2110L6 lead symbol description v dd logic supply hin logic input for high side gate driver output (ho), in phase sd logic input for shutdown lin logic input for low side gate driver output (lo), in phase v ss logic ground v b high side floating supply ho high side gate drive output v s high side floating supply return v cc low side supply lo low side gate drive output com low side return v b sd lin v dd pulse gen r s q v ss uv detect delay hv level shift v cc pulse filter uv detect v dd /v cc level shift v dd /v cc level shift lo v s com r s q r s rq hin ho functional block diagram lead definitions
IR2110L6 case outline and dimensions mo-036ab world headquarters: 233 kansas st., el segundo, california 90245, tel: (310) 322 3331 european headquarters: hurst green, oxted, surrey rh8 9bb, uk tel: ++ 44 1883 732020 ir canada: 7321 victoria park ave., suite 201, markham, ontario l3r 2z8, tel: (905) 475 1897 ir germany: saalburgstrasse 157, 61350 bad homburg tel: ++ 49 6172 96590 ir italy: via liguria 49, 10071 borgaro, torino tel: ++ 39 11 451 0111 ir far east: k&h bldg., 2f, 3-30-4 nishi-ikeburo 3-chome, toshima-ki, tokyo japan 171 tel: 81 3 3983 0086 ir southeast asia: 315 outram road, #10-02 tan boon liat building, singapore 0316 tel: 65 221 8371 http://www.irf.com/ data and specifications subject to change without notice. 6/96 v ss lin sd hin v dd com lo v cc v s v b ho pin assignment


▲Up To Search▲   

 
Price & Availability of IR2110L6

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X